SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE TITLE:	COMPUTER PROGRAMMING I			
CODE NO.:	CSD100	FALL 97SEMESTER:		
PROGRAM:	CET/CNT/CPA/CSST			
AUTHOR:	DENNIS OCHOSKI			
DATE:	JUNE 1998	PREVIOUSLY DA	JUI TED:	NE 1997
APPROVED:	DEAN	5	9805 DATI	22

CSD100

COURSE NAME

COURSE CODE

TOTAL CREDITS: 4

PREREQUISITE(S): NONE

I. COURSE DESCRIPTION: This course is intended to provide a firm foundation of computer programming skills needed in the computer studies area. It is the first of two courses that use the C programming language to develop the student's computer programming and problem solving skills.

II. TOPICS TO BE COVERED:

- 1. Introduction to computer programming concepts.
- 2. Basic C program structure.
- 3. Input/output in C.
- 4. Decisions/Conditions in C.
- 5. Repetition/Looping in C.

-2-

CSD100

COURSE NAME

COURSE CODE

III. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE:

Upon successful completion of this course the student will demonstrate the ability to:

1. Discuss and apply the concepts involved in the development of software to solve problems using the computer. (Unit 1 - Perry and lecture notes)

This learning outcome will comprise 15% of the course.

Elements of the performance:

- define the concept of a "computer program/software"
- differentiate between prewritten software and custom-designed software
- · differentiate between high level languages and machine language
- describe the purpose of a compiler/interpreter
- describe the top-down process of developing a program
- apply the "golden rule" for writing computer programs
- · describe the process of transforming a source program to an executable module
- differentiate between batch processing and online processing
- write algorithms and describe them using pseudocode and flowcharts
- 2. Write a simple C program applying the concepts of program structure, arithmetic, and assignment. (Units 2, 3, 5, 6, 7 and 9: pgs. 182-190)

This learning outcome will comprise 10% of the course.

Elements of the performance:

- explain the main components of a C program
- name and distinguish C's basic data types
- explain and properly use the naming conventions for C identifiers
- · differentiate between character and numeric constants
- differentiate between character and numeric variables
- declare and initialize variables correctly
- explain computer memory concepts and how they relate to processing data
- use assignment operators (=, +=, -=, *=, /=, ++, -)
- use arithmetic operators and apply their precedence (+, -, *, /, %)

CSD100

COURSE NAME

COURSE CODE

Elements of the performance(cont'd):

- evaluate integer and mixed-mode arithmetic correctly
- explain automatic promotion and apply typecasting to define data types
- use the sizeof operator to determine how much memory is needed to hold a value

-4-

- · differentiate between syntax and logic errors
- write and compile a simple program in C incorporating the concepts above
- Develop algorithms and write C programs to solve problems involving the standard computer operations of input and output. (Unit 3 pg. 54, Unit 4, Unit 6 pgs. 120-123, Unit 15 pgs. 303-317)

(Omt 5 pg. 54, Omt 4, Omt 6 pgs. 120-125, Omt 15 pgs. 505-51

This learning outcome will comprise 15% of the course.

Elements of the performance:

- apply the scanf function to perform input of data
- apply the printf function to perform output of data
- apply simple character-based functions to perform input/output of data (getchar(), putchar(), putc(), getch(), putch(), getche())
- apply simple string-based functions to perform input/output of data (gets(), puts())
- apply proper variable format codes to the input and output of data
- explain the purpose of "include" files for the scanf and printf functions
- write, test, and debug programs using the scanf and printf functions
- Develop algorithms and write C programs to solve problems involving the standard computer operations of decisions/conditions and selection. (Units 8 and 14)

This learning outcome will comprise 25% of the course.

Elements of the performance:

describe the use of the relational and logical operators, and use them to write complex logical expressions (==, !=, <, <=, >, >=, !, &&, ||)

-5-

COMPUTER PROGRAMMING I

CSD100

COURSE NAME

COURSE CODE

Elements of the performance(cont'd):

- describe the operation of the following C decision-making structures and use them in C programs:
 - a. if...else
 - b. nested ifs
 - c. if...else if...else
 - d. the switch statement
- write algorithms to solve problems containing decision-making structures, and describe them using pseudocode and flowcharts
- write, test, and debug programs containing selection structures
- Develop algorithms and write C programs to solve problems involving the standard computer operations of looping and repetition. (Units 11, 12, and 13)

This learning outcome will comprise 35% of the course.

Elements of the performance:

- discuss the concept of repetition/looping in computer programs
- describe the operation of the following C repetition structures and use them in C programs:
 - a. while
 - b. do...while
 - c. for
 - d. nested loops
 - e. break and continue statements
- describe and correct an "infinite loop" problem
- write algorithms to solve problems containing repetition structures, and describe them using pseudocode and flowcharts
- · write, test, and debug programs containing repetition structures

CCDIM

IV. EVALUATION METHODS:

The mark for this course will be arrived at as follows:

Quizzes:	
outcome #1	10%
outcomes #2 & #3	20%
outcome #4	20%
outcome #5	25%
	75%
Assignments.	
outcome #1	5%
outcomes #2 & #3	5%
outcome #4	5%
outcome #5	10%
	25%
Total	100%

The grading scheme used will be as follows:

A +	90 - 100%	Outstanding achievement
Α	80 - 89%	Excellent achievement
B	70 - 79%	Average achievement
С	55 - 69%	Satisfactory achievement
R	Repeat	

X Incomplete. A temporary grade limited to special circumstances have prevented the student from completing objectives by the end of the semester. An X grade reverts to an R grade if not upgraded within a specified time.

COURSE NAME

CSD100

COURSE CODE

V. SPECIAL NOTES

- 1. In order to pass this course the student must obtain an overall quiz average of 55% or better, as well as, an overall assignment average of 55% or better. A student who is not present to write a particular quiz, and does not notify the instructor beforehand of their intended absence, may be subject to a zero grade on that quiz.
- 2. Assignments must be submitted by the due date according to the specifications of the instructor. Late assignments will normally be given a mark of zero. Late assignments will only be marked at the discretion of the instructor in cases where there were extenuating circumstances.
- 3. The instructor reserves the right to modify the assessment process to meet any changing needs of the class. Consultation with the class will be done prior to any changes.
- 4. The method of upgrading an incomplete grade is at the discretion of the instructor, and may consist of such things as make-up work, rewriting tests, and comprehensive examinations.
- 5. Students with special needs (eg. physical limitations, visual impairments, hearing impairments, learning disabilities) are encouraged to discuss required accommodations confidentially with the instructor.
- 6. Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.

VI. PRIOR LEARNING ASSESSMENT:

Students who wish to apply for advanced credit in the course should consult the instructor.

VII. REQUIRED STUDENT RESOURCES

Text: Programming C in 12 Easy Lessons by Greg Perry

Diskettes: minimum of 3, 3 1/2"

-7-